Skip links

What Retrieval Augmentation Generation (RAG) offers to LLM?

Let's revisit FMs

Foundation models serve as the base model for more specific models. A business can take a foundation model, train it on its own proprietary data and fine-tune it to a more specific task or a set of business domain-specific tasks.

Several platforms likes of Amazon, IBM, Google and Microsoft provide organisations with their framework for building, training AI models and deploying them. Sometimes, they don’t do well with some special latest data/topics or with new information. 
Large Language Models

LLM

Why we need to ground LLMs?
How it works?

RAG for LLM

Retrieval and Generation

The Process

So, how does it work?

As Meta calls it; answering with both closed and open book

1

take user prompt

Rather than passing the uuser input directly to the generator, send it to the vector search solution to find the relevant information

2

augment prompt

 Once it has that relevant information it will construct a “prompt” that contains the question the user asked, the information received from the vector search

3

search & generate

augmented prompt is creted to make the LLM respond how you’d like. Once this is done, all of that information is sent to the LLM.

Insights and Updates

The Latest News, Trends,  and Best Practices

Organising for Generative AI: why CEO needs to know this?

Generative AI is a subset of Deep learning, it uses artificial neural network, can process both labelled and unlabelled data using supervised, unsupervised and semi supervised methods. Generative Deep learning model, learn patterns in unstructured content, generate new data that is similar to data it was trained on.

What Retrieval Augmentation Generation (RAG) offers to LLM?

Retrieval-augmented generation (RAG) for large language models (LLMs) aims to improve prediction quality by using an external datastore at inference time to augment a richer prompt that includes some combination of context, history, and recent and relevant knowledge.

Leave a comment